Fast, Randomized Join-Order and Join-Method Selection
Combined with
Transformation Based Optimization !

Arjan Pellenkoft
César Galindo-Legaria
Martin Kersten

CWi

{arjan,cesar,mk}@cwi.nl

Most of the work on randomized query optimization has relied heavily on
the use of transformations rules for the generation of execution plans. Re-
cently, however, we gave evidence that for the problem of choosing a join
evaluation order, generating alternatives uniformly at random from the space
yields solutions comparable to those obtained with transformation-intensive
methods, and requires generating fewer candidate plans.

This paper presents a thorough empirical study of the impact of catalogs
and join methods on the relative performance of transformation-free and
transformation-based randomized optimization. Basically, our previous re-
sults remain valid for a wide variety of catalogs and relational profiles. But
In contrast with the problem of selecting a join order, selecting join algorithms

o

(e. g. hash, merge, nested-loops) seems better handled by transformations
than random picking.

We then propose a two-phase approach that combines the speed of random
picking with the quality of solutions of transformation-based optimization,

and verify experimentally its superiority over the other algorithms, in all the
search spaces considered.

1 INTRODUCTION

A major task of relational query optimizers is to select a suitable join evalua-
tion order for which the estimated evaluation cost is minimum [UlI82, CP85,
KRB85]. For small queries, exhaustive search is often feasible, but the number

1To Cor Baayen, at the occasion of his retirement and as a tribute to his choice in 1985
to establish a Database Research group. His visionary goal to improve scientific cooperation
1s exemplified by the co-author César Galindo-Legaria, one of the few ERCIM fellows.

469

of join orders increases very fast as the number of relations grow. Heuris-
tics and /or probabilistic algorithms are then a viable alternative. Research on
probabilistic algorithms has focused on Simulated Annealing (SA) and Iterative
Improvement (II), and their variations [IW87, SG88, Swa89b, Swa89a, 1K90,
IK91, LVZ93]. Those optimization algorithms rely heavily on transtormation
rules to generate alternative join evaluation orders. The transformation rules
are usually based on algebraic properties of the join evaluation orders, like
commutativity and associativity, and they impose a particular topology on the
search space —namely, evaluation plans are adjacent if they differ by a single
application of a transformation rule. But the effect of a given topology on
the behavior of search algorithms remains difficult to quantify. This prompted
us to examine a transformation free (TF) optimization scheme that generates
plans uniformly at random and keeps the best solution generated [GLPK94|.
Our finding was that transformations tend to improve solutions “slowly,” and
the TF scheme converges faster and finds plans comparable to those found by
transformation based optimizers.

The study in [GLPK94] was based on a calibrated cost model for the DB53
system [ACV91] —a main memory database whose cost model accounts for
cPU only— and considered execution plans with only hash-joins. In this paper
we extend our previous experiments to assess the stability of the phenomenon
observed. We use the same I/O-dominated cost model used at the University of
Wisconsin in their randomized optimization work [IK90, Kan91]. We examine
the impact of indices, changes on the statistical profiles of the catalogs, and
the use of different join algorithms.

For the problem of selecting a join-order, the size of the space is exponential
in the number of relations (see [GLPK95] for the exact size). When, in addition,
a join algorithm is selected (n — 1 m-ary decisions for a query on n relations
with m algorithms available), the resulting search space is the product ot two
exponentially large spaces. So, including the selection of join algorithms has
a different effect on the problem than changing the cost model or the catalog
profiles. In fact, our current experiments show a qualitative difference in the
relative performance of optimization algorithms when different join algorithms
are allowed. The “high proportion” of good solutions in the space ot evaluation
orders is for the most part preserved on different catalogs and cost models, but
it decreases in the product space of evaluation orders with method selection. At
the same time, the transformations used in this product space seem particularly
appropriate and lead to good solutions.

We then study a two-phase approach similar to those of [IK90, LVZ93], using
TF in the first phase and then transformations. The behavior of this algorithm
combines the fast converge of random picking with the high quality of solutions
of transformation-based search, and it is superior to the other algorithms in
all the spaces we considered. From the behavior of this hybrid algorithm, it
appears that the neighborhood structure around a given plan, from the point
of view of the transformation-induced topology, depends mostly on the cost of
such plan. That is, a transformation-based search behaves roughly the same

470

way when started on any two randomly-selected plans of the same cost.

Road map. This paper is organized as follows. In Section 2 we give definitions,
details on the cost model, and the three basic search algorithms. The testbed
for the experiments is described in Section 3. Section 4 describes experiments
with various catalogs, and Section 5 examines multiple join algorithms. Finally,

Section 6 contains experimental results on hybrid algorithm. Conclusions are
given in Section 7.

2 DEFINITIONS

This section defines the search space, the basic probabilistic search algorithms

used on that space, and the performance measure used for comparing the al-
gorithms.

2.1 Search Space

Query evaluation plans. We represent a query by means of a query graph.
Nodes of such graph are labeled by relation names, and edges are labeled by
predicates. An edge labeled p exists between the nodes of two relations, say R,
R;, if predicate p references attributes of R;, R;. The result of a query graph
G = (V, E) is defined as a Cartesian product followed by relational selection:

OpyAnpy (BR1 X -+ X Rp), where {p1,...,pn} are the labels of edges £ and
{Ry,...,R,} are the labels of nodes V.

Query evaluation plans (QEPs) are used to evaluate queries, instead of the
straight definition of product followed by selection given above. A QEP 1s an
operator tree whose inner nodes are labeled by a join operator and whose leaves
are labeled by relations. The result of a QEP is computed bottom-up in the
usual way. QEPs include annotations on the join-algorithm to use —e. g. nested
loops, hash, merge, etc.— when several are available.

Not every binary tree on the relations of the query is an appropriate QEP,
because some may require the use of Cartesian products. We restrict the search
space to those QEPs that do not require products, called valid in [SG88|. Some
systems restrict the topology of QEPs further, so that each join operates on
at least one base relation. Such restriction leads to the space of linear QEPs.

We do not impose such restriction here, so we work on the more general bushy
space.

Tree transformations. The transformations used to generate new QEPs, where
applicable, are the following [IK90, IK91]: Commutativity, A< B « B < A;
associativity, (A >a B) o C < A < (B < C); left join exchange, (A < B) <
C < (A< C) > B; right join exchange, A < (B < C) «» B < (A > C) and
join method selection, A bethod; B < A DNmethod; D-

471

PROCEDURE II() A
minS = infinite; // with cost(infinite) = infinite
WHILE not (stopping_condition) DO {
S = random state;
WHILE not (local_minima(S)) DO {
S’ = random state in neighbors(S);
if cost(S’) < cost(S) THEN S = S°;}
IF cost(S)<cost(minS) then minS = S;}
return(minS) ; }

FIGURE 1. Iterative Improvement

2.2 Search Algorithms

We experiment with three basic search algorithms, the transformation-based
Iterative Improvement and Simulated Annealing, and a transformation free
algorithm. We summarize them here for completeness. More details on the
transformation-based optimizers can be found in a number of references, in-

cluding [KCV82, NSS86, SG88, IK90, LVZ93].

Iterative Improvement (II) performs a large number of local optimizations.
A local optimization starts at a random QEP, called the current QEP. By
applying a randomly selected transformation rule to the current QEP a new
one is generated. If this is cheaper then it 1s accepted as current QEP, otherwise
it is rejected. A local optimization stops when a local minimum has been
reached. The II algorithm stops as soon as a predefined number of plans has
been generated. The plan found with the lowest cost is returned as the result.
Figure 1 shows the pseudo-code of the II algorithm.

To detect a local minimum the neighbors are not searched exhaustively but
a r-local minimum is used [Kan91|, i.e. a plan is a local minimum if none of 7
randomly selected neighbors has a lower cost. Since the plans are selected at
random, and repetitions are possible, a r-local minimum is not guaranteed to

test all neighbors. In the experiments r is set to the number of neighbors of a
node.

Simulated Annealing (SA). Sometimes the II algorithm fails to find good plans
because it gets stuck in high cost local minima. SA attempts to solve this prob-
lem by also accepting new QEPs with a higher cost, with some probability. The
SA algorithm starts at a random QEP and randomly generates next QEPs. The
probability of accepting QEPs with higher cost decreases as time progresses.
When a predefined number of plans has been generated or a “stable condition”
has been reached the SA algorithm stops.

472

PROCEDURE SA(){
S = S50;
T = TO;
minS = S;
WHILE not(frozen) DO {
WHILE not(equilibrium) DO {
S’ = random state in neighbors(S);
deltaC = cost(C?’) - cost(S);
IF (deltaC <=0) THEN S = S’;
IF (deltaC > O0) THEN S = S’ with probability e~ (-deltaC/T);
IF cost(S)<cost(minS) THEN minS = S;}
T = reduce(T);}
return(minS) }

FIGURE 2. Simulated Annealing

Figure 2 shows the pseudo-code of the SA algorithm. The frozen and equz-
lzbrium conditions used in our experiments are those given in [Kan91].

If time is infinite both transformation based search algorithms will find the
global minimum, but in practice the resource available for optimization are
limited and must be used as efficiently as possible.

Transformation Free (TF). To remove the reliance on transformation rules,
and a potentially slow quality improvement, the TF algorithm was investigated
in detail in [GLPK94|. This algorithm generates QEPs uniformly at random,
and keeps track of the one with the lowest cost. The algorithm terminates
after it has generated a predefined number of QEPs. The QEP with the lowest
cost is returned as preferred plan for execution. Like II and SA, if TF is given
infinite time it will find the global minimum. But unlike SA and II, if time is
finite TFs performance only depends on the cost distribution over the search
space and not on the topology imposed on the space by the transformation
rules. Figure 3 shows the pseudo-code of the TF algorithm. Note that the

random states are chosen wuniformly from the space. See [GLPK95| for details
on how this i1s achieved.

2.8 Performance Measure
The behaviour of an optimization strategy can be represented by a function
mapping the number n of plans explored to the estimated cost of the best plan
found. For a given algorithm A, we call this cost the solution after n, and
denote it by S7. Formally, using U# as the set of the first n plans visited by
A, the solution after n is:

S2 = min{cost(p) | p € U*}.

"

473

PROCEDURE TF(){
minS = random state;
WHILE not(stop_condition) DO {
S = random state;
IF cost(S)<cost(minS) THEN minS = S;}
return(minS) }

FiGURE 3. Transformation Free

For transformation-base algorithm, every valid plan generated by the al-
gorithm is counted as explored, even if it is not accepted by the algorithm
(e. g. because its cost is higher than the current plan in II).

Since the algorithms are probabilistic, U# is a random subset of size n from
the search space, and therefore S# is a random variable. Based on this, we
measure the success of these algorithms using the mean and standard devi-
ation of the solution. As m increases, the mean of S? should approach the
minimum cost in the search space; while at the same time the standard devia-
tion of SA approaches zero. The second condition ensures that the algorithm,
though probabilistic, behaves in a stable way. Although the number of plans
explored does not account for all the resources required by an algorithm, we use

this solution after n as an implementation-independent measure of algorithm
performance.

3 TESTBED

To assess the stability of the TF search algorithm we conducted a large number
of experiments with the 1/O-based cost model of [Kan91] and queries and
catalogs that were also used in our earlier work with the DBS53 cost model
ACV91].

The new cost model is used exhaustive to study the impact of the catalogs
and the available join methods on the performance of TF, 1I, and SA. The
queries used in the experiments are randomly generated and acyclic. They
range form 4 to 20 joins and all join predicates are equality joins. These
queries were optimized for three catalogs with different variance in attribute
values and relation size. The queries and catalogs used in [IK91] constitute our

starting point and in the sequel of this paper these catalogs will be referred to
as the original catalogs.

3.1 (Cost Model

The cost model called CM2 in [Kan91] is the basis for our experiments. This
cost model assumes a disk-based database system. Since the cost of evaluating
a QEP is dominated by the I/O, the number of pages that are read or written
during the evaluation of a QEP is used as cost metric. A large buffer is assumed

474

Catalog Cardinality | Percentage of ﬁhidue values 111 attribute

catalog 1 1000 ~ 10.9,1.0]
catalog 2 | [1000,100000 0.9,1.0]
catalog 3 | [1000,100000] 0.1,1.0]

i~ b A A5 b o — . TP T S

FIGURE 4. Sizes and selectivities of the original catalogs

in the cost model. The major difference with the DBS3 cost model used in our
previous work, is that the DBS3 model assumes a main memory database
system, in which the CPU cost is the predominant tactor.

The CM?2 cost model is able to handle three join algorithms, namely nested-
loop, merge-scan and hash-join. The cost functions tfor the nested-loops algo-
rithm are page-level nested-loops join and indez-scan nested-loop. The cost of
the cheapest alternative is returned as cost for a nested-loop join. The cost of
the merge-scan join consist of sorting the inputs, if they are not already sorted,
and by merging the two input streams. The hash-join also has two alternatives
of which the one with the cheapest cost is returned. These two alternatives are
simple hash-join and hybrid hash-join. In the computation of the cost for the
hash-join it is assumed that the hash table is build on the smallest input.

When an index is available for a join attribute it can be used to reduce
the loading cost. The usual assumption is made that the attribute values are
uniformly distributed and that the columns values are independent.

3.2 Factors Considered
The factors considered in our study are the following:

e Catalog variance (the difference in relation size and join selectivity).
e Relation sizes (original catalogs or enlarged catalogs).

e Indices (present or not).

e Join algorithms (nested-loop, hash-join, merge-scan).

The catalogs used are randomly generated from a profile that specifies an
allowed range for relation sizes and uniqueness of attributes. Figure 4 gives the
profiles for the three types of catalogs used. For example, a catalog of type 2
(or simply catalog 2) uses relation sizes ranging from 1,000 to 100,000 tuples
and the uniqueness of the attribute values range from 90% to 100%. This
percentage of unique values is used for the computation of the join selectivity
in the cost estimation. The ranges are chosen such that the variance in catalog
1 is small, and it is increased in catalogs 2 and 3.

The enlarged catalogs are constructed by multiplying the relation sizes in the
original catalog (Figure 4) by a hundred. These enlarged catalogs were used to
study the impact of the large I/O buffer in the cost model and possible non-
linear behaviour of the cost functions. For both the original and the enlarged

475

catalogs we used two variants; one with many indices and one without indices.
They are used to check the hypothesis that indices have a strong effect on the
shape of the search space and, therefore, affect the performance of the search
algorithms.

In the experiments discussed in Section 4 there is only one join method
available for a single QEP. So all of join operators in a QEP are either nested-
loop, merge-scan or hash-join. Section 5 and 6 describe experiments in which
the plans considered combine different join algorithms.

3.8 Performance Characteristics

These graphs showing our results present the average of solutions found by the
various algorithms after exploring a given number of plans. As is usual in the
work on this subject, the y-axis is a linear measure of scaled cost, with a scaled
cost of 1 for the cheapest individual plan found by any algorithm, in the given
search space.

These graphs have some properties useful for the comparison of search algo-
rithms. A general description of the graph of TF and II is as follows. Up to
a crossover point the TF algorithm generates better plans, and after that the
IT algorithm finds better plans. This crossover point marks the solution that 1s
found by both algorithms after exploring the same number of plans.

After exploring a many plans, the cost of solutions found by probabilistic
algorithms improves very slowly. We could say that at some point the optimizer
becomes stable and call the quality of the plan at that point the final cost. The
difference in final cost i1s used to compare algorithms.

Another important characteristic of the graph is the cost range. If the dif-
ference between the best solution and the worst solution in the search space 1s
small, the optimization has a relatively smaller impact on the execution time
of the query. If, on the other hand, the cost range is large, the optimizer can
produce a dramatic improvement on query performance.

These three aspects —crossover point, final cost (difference) and cost range—
of a performance graph are helpful in analysing the performance of the search

strategies. In Figure 5 these aspects are marked in a skeleton performance
graph.

4 EFFECT OF VARIANCE, INDICES, AND RELATION SIZES

This section discusses the experiments done to determine the circumstances
for which the random generation of plans is comparable to the transformation
based approach. The sequel of this section describes the behaviour of TF, 1l

and SA for various catalogs and join methods. All graphs shown are averages
over a large number of runs.

4.1 Catalogs with Indices

The original catalogs with indices are used for our first experiment. As men-
tioned in Section 3 the optimizers only consider QEPs in which all join algo-

476

Cost range

Scaled cost | ‘

Crossing point

Final cost Final cost difference

Sample size

FIGURE 5. Skeleton performance graph

rithms are either nested-loop, merge-scan or hash-join.

We observed that as the catalogs changed, from low variance to high variance,
the cost range of the graphs increased and the crossover point shifts to the lett.
The final cost of the IT and TF algorithm are similar for catalogs 2 and 3. Only
for the low-variance catalog 1 the II algorithm is consistently better. For the
high-variance catalogs the relative performance TF algorithm is best. Figure
6 illustrates shows the results for a query of 20 joins when only hash-joins are
considered (the results for nested-loops and merge-join are similar).

To our surprise the QEPs with only nested-loops join were the cheapest in
absolute cost. A closer examination of the QEPs generated showed that the
Jarge buffer size, relative to the size of the relations involved, caused this eftect.
Most of the processing can be done such that the inputs to the join operator
fit in the buffer, so the nested loops algorithm does not require any reloads.

Due to the overhead cost of the other two algorithms they resulted in more
expensive QEPs.

4.2 Clatalogs without Indices

We drop all indices in the next round of experiments, to test the assumption
that indices reduce the cost range and make the search space smoother. That
is, the cost difference with neighbors becomes smaller.

Surprisingly, for the experiments conducted, the performance difference be-
tween search algorithms in spaces with indices or without is small. But an
interesting change can be observed for the high variance catalogs in Figure 7.
Compared to the indexed catalogs the crossover points shifted slightly to the

477

Catalog 1, 20 hash joins Cataleg 2, 20 hash joins Caitalog 3, 20 hash joins.

| ¥ § 1 | 13 t "t I i T
5.0 ¥ 5.0 i 5.00 | : "
AN - ¥ XD - ¥ o i =, A
o .- R
&40 - - 140 - 440 \i
4.26 4.2 s20 | |
A - A - 15K) ﬂ
186 - LRn - 3.8 | i
.o " wo |
340 140 e 1
3.2 w0 1 X "
300 - 3 300 on \
2.8 240 200
260 200 1ed) L
2.4 T4 Y AG \
2.29 ~ 13 - 1.2 - ‘}
100 200 200 |
9 S v e L R R LT SRR LA LA 3
10 ' ' —— FY I)) - AN ~
LA - 1AG - b - R
1.3 1.0 |20 . B e m——
l.w R TN R T T W IS TN R g 58 0 1 Nl B3 il 8 00 e 10t i e s« Irm lm Tt
o8 - ! Swnple s A WY o - ! * ‘ Saepsl mag » WP () - | | Samaph: s 4 10
ano 0.5 1.00 1.50 100 .00 s 100 | 50 2.4%) ey 0.5 1 0 1M 100
- W » L] L J
FIGURE 6. Space of hash QEPs for the original catalog with indices
Catalog 1 without indices, 20 hash joins Catalog 2 without indices, 20 hash joing Catalog 3 without indices, 20 hash joins
Scabixd cont Scabad Lt Seahad Kimd
! TP | | | T L | T\
% () i 4) i 5 1x} i : n
AN . YA) . Xa a8 E{ - KA
4.0 Al - 4 i) [k
840 - 440 4.4 |
3.} 4.30 4 M 5
A4 - o 08 - 4 N} !
18 - (R : 180 - \
a0 1.0 1.ed)
¥ 40 140 Y40 5}
3.1 3,20 %) !
TE : Vo - - 3.0 \
7.8 .80 28
240 2 it 2.0 l
240 240 2.4 \
230 - [, . 1M - \
2.0 150 3 A
1RO N MSe e rn | N
L NI T T T T T raon e | " o
1A —) 40 T i s amanags, . LM
1.20) 20 g S 1M
t 00 ML L L ity awsadee om e smees b haa s o i eeace 11K} R L A aioiaan i S 1S T TF1 WU,)
o - | Barmptc sioc 16 ase * ’ Sempk mec 3 108 usg ! ! Sarmphy sax a 10
Q.00 0.%0 y) |5 210 oo I8 IR} | 8t 2400 B0 (0 50 | 1 | 50 24X}

FIGURE 7. Space of hash QEPs for the original catalogs without indices

right for all join methods and the quality of the plans at the crossover points
is better. The cost range of the graphs and the final costs are similar to those
of the indexed catalogs.

Our experiments, then, lead to the conclusions that although indices have a,
noticeable impact on optimization performance, it is relatively small compared
to the impact of the catalog variances or variance in join selectivity.

4.8 Large Catalogs with Indices

To examine the impact of the large buffer on the performance of the search
algorithms, we enlarged the relation sizes of the original catalogs. For these
big relations the QEPs with only hash-joins were consistently cheaper than
QEPs with only merge scan or nested loop. This search space ot QEPs, with
only hash joins, also showed the biggest change in performance. For catalog 2
TF finds plans much faster than II and also the distance between the graphs has
erown in comparison to the original catalog 2. For catalog 3 the TF algorithm

478

Enlarged Catalog 1. 20 hash joins Enlarged catalog 2, 20 hash joins Enlarged catalog 3, 20 hash joins

Scnbid yaomd

1 1 f ! i
: LX)
- =
1 o &
M.00 1
|

E
;
f
E

&

B
5=
=3

: i
=3

i

1300

L T, i mm
'} .0
{ . MO0 -
1
| .00
| X0 -
.00

tem - ‘
100 -11 14X - ‘\‘
.) 12,00
' —

EsEabEséE

EEEVEEssEEBEEEEEs &
: i 1 + v I i

{hexy - -
w5 1Y | ! i DIl 2 br? 1 l d ‘WM: T
H.00 .M b0 1.30 2505 .00 [He 1.4 1.5 2.0 (X} (& 300 5.00 4 .45

FIGURE 8. Space of hash QEPs for enlarged catalogs with indices

improves faster before the crossover point, but this crossover point has a high
cost. _

With the enlarged catalogs both the cost and the difference between final
costs has grown. To make the performance graphs of the search algorithms
visible, the scale of the y-axis was enlarged by a factor of ten. In Figure 8
the performance graphs of the search algorithms are given for the tree catalogs
when only hash-joins are used.

We also ran experiments for enlarged catalogs without indices. The results

are basically the same as those presented for the spaces with indices, so they
are not shown here.

5 EFFECT OF MULTIPLE JOIN ALGORITHMS

We now consider the use of multiple join algorithms in QEPs. To deal with
this case in transformation based strategies, a rule is added that changes the
algorithm at a specific join operator. Such addition leads to a dramatic growth
of the search space. If m join algorithms are considered and the QEPs joins n
relations, each QEP in the original search space is mapped to m™~! QEPs with
join selection. This big search space seems to contain cheaper QEPs —e. g. a
hash-join whose inputs are sorted can be replaced by a merge-scan— but it
also introduces many QEPs with higher cost. Important for the performance
of all three search algorithms is how the cost distribution changes, and for
transformation based optimizers also the modified connectivity of the search
space.

Uniformly random generation of elements from the enlarged space is easy
—modulo the uniform generation of evaluation orders. Simply select indepen-
dently and uniformly a join algorithm for each join in the QEP.

Figure 9 shows the performance graphs tor the three search methods using
all join algorithms. For reference, we also show the result of Il and TF on the
restricted space of plans that use hash-joins only. The effect of the enlarged

479

Catalog 3. 20 joins.
Scaled cost
Y | | TF-all
500 ~- roob

4.80
4.60 ~ |
440 - |
420 — |
4.00
3.80 - |
3.60 — |
3.40 - |
320 i
300 -
2.80 -
2.60 —

2.40
220 -
00 -
| 80 -
1.60 -

1.40
1.20 -

1.00

0.80 - | ' ! 'Samplc size x 103
0.00 0.50 1.00 1.50 2.00

FIGURE 9. Multiple join methods

space is clear from this graph. Initially, both TF and II progress about as
~quickly in the space restricted to hash-joins as in the more general space. But
then TF becomes stable in more costly solutions when it has to select a join
algorithm, while II finds better solutions when selecting a join algorithm.

We can conclude that the reduced percentage of good plans in the bigger
space has a negative effect on the performance of the TF algorithm. However,
the topology imposed by the change-join-algorithm transformations seems par-
ticularly appropriate for a transformation-based search.

In the following section we show experiments in which random generation
and the use of transformation rules are mixed. Ideally these methods should

incorporate the good behaviour of both the TF and II algorithm, fast conver-
gence and good final plans.

6 HYBRID ALGORITHMS

Considering all experiments performed, an improvement of transformation
based optimizers seems feasible by balancing the generation of random plans
with the application of transformations. Other multi-phase optimization
schemes have been proposed in [Kan91, LVZ93|, but they still rely mainly
on transformations to generate alternatives.

It is reasonable to consider starting the search by generating a predefined
number of plans (TF-phase), followed by one transformation-based local opti-
mization. During this local optimization phase no new random starting points

430

PROCEDURE SII(mn) {
minS = infinite; // with cost(infinite) = infinite
WHILE not (stopping_condition) DO {
S = random state
FOR 1 =1 TO0On - 1 D0 {
S’ = random state;
IF cost(S’) < cost(S) THEN S = S’:}
WHILE not (local_minima(S)) DO {
S’ = random state in neighbors(S);
IF cost(S’) < cost(S) THEN S = S’;}
IF cost(S)<cost(minS) then minS = S:;}
return{minS) ; }

FIGURE 10. Set-Based Iterative Improvement

are generated. A generalization of this idea is what we call the Set-based Iter-
ative Improvement (SII,) algorithm. This hybrid algorithm is an II algorithm
that uses the best plan of a randomly generated set as starting state for a local
optimization. The n represents the size of the randomly generated start set.
Figure 10 shows the pseudo-code of the algorithm.

Figure 11 shows the performance of SII gg, as well as TF and II for the space
of join ordering, when using the enlarged catalog 3. The graph of the SII;gq
algorithm reflects the behaviour of both the TF and II algorithm. It converges
as fast as the TE graph in the first part of the graph and then picks up the
behaviour of the II algorithm, resulting in very good quality plans. Figure 11
1s typical for the behaviour of the SII algorithm.

Figure 12 shows the performance of SII g9 on the space of join ordering plus
join-algorithm selection, also in combination with enlarged catalog 3. Although
the TF algorithm has a weak performance for this search space, the SII;gg
algorithm maintains its good behaviour.

7 (CONCLUSIONS

In this paper we examined the impact of several factors on the performance of
probabilistic query optimization algorithms, in particular the relative behavior
of random picking of solutions with respect to transformation-based search.
The results of random picking give a direct indication of the proportion of
good solution in the search space, while the transformation-based search also
depends on the topology imposed by the specific set of transformations used.
Our experiments show that the results obtained in [GLPK94] for a main-
memory database remain valid, for the most part, when the I/O-based
cost model of [IK90, Kan91] is used instead. A transformation-free algo-
rithm finds good plans faster than a transformation-based approach, but the

431

Enlarged catalog 3. 20 joins.

Scaled cost

200.00 T i -I-l-:l'-‘a;iuﬁ ----------------

190.00 - 1 Sii-hash 100
180.00 | :
170.00 -

16000 & i
150.00 - '
140.00 -
130.00
120.00 -
110.00 -
100.00 -
90.00 -
80.00
70.00 -
60.00
50.00 -
40.00 .
30.00 - : .,
20.00 - -, Ty
o R — oy
0.00 — T T R R e . .-y _

Sample size x 103
0.00 0.50 1.00 1.50 2.00

FIGURE 11. Hybrid search on the restricted space of hash-joins

Enlarged catalog 3. 20 joins.
Scaled cost

| Ti-all
5.00 - T
4.80
4.60 -
4.40
4.20 -
4*00 :
3.80 - "
3.60 ’

3.40 =
3.20 - \

2.80 -- :
2.60 }

2.40 .,

2.20
b

2.00 - 1

1.80 }
1.60 |
1.40

.20 -
1.00
0.80 | | | | | Sample size x 107

0.00 0.50 1.00 1.50 2.00

F1GURE 12. Hybrid search using all available join algorithms

482

transformation-based search finds the best plans in the end. This happens
because the ratio of good plans is substantial and the topology imposed by as-
sociativity /commutativity /exchange transformations does not seem to aid the
search significantly, especially at the beginning of the process. We observed
that the presence of indices does not reshape the search space, and affects only
marginally the performance of all the search methods.

We then studied the effect of selecting a join algorithm, in addition to a join
evaluation order. In this case the search space becomes the product of two ex-
ponentlally large spaces, and its properties turn out to be qualitatively different
from those of selection of a join order evaluation alone. The proportion of good
plans decreases in this combined space, and at the same time the topology
induced by the change-algorithm rule seems to favor the transformation-based
search.

Finally, we described and tested a two-phase optimization approach that
starts with random picking to generate good plans quickly, and then applies
transformations for further refinement. The result is a combination of the best
of both search strategies: fast convergence to solutions of very high quality.
We believe this hybrid approach is basically the best alternative in a purely
stochastic search —i. e. one that does not consider heuristics— probably with
an additional Simulated Annealing phase at the end as suggested in [IK90].

There are related issues that remain to be addressed. The first is how to
incorporate heuristics in a robust manner. In our view, the use of heuristics
In randomized search must be that of “rigging the odds” in favor of the better
plans. We are in the process of formulating the necessary framework. Also,
the two specific spaces identified in this paper on which the transformation-
based and transformation-free schemes behave significantly differently provide

a test case for the study of when and how are transformations advantageous
for optimization.

Acknowledgements. To conduct the experiments reported on this paper, we
coded the uniformly-distributed generation of join trees, and the TF and hybrid
algorithms on top of the code for randomized query optimization developed at
the University of Wisconsin [IK90, Kan91]. We are grateful to Yannis loannidis

for kindly providing us with a copy of their software, and for allowing us to
modify it for our experiments.

REFERENCES

ACV91] F. Andres, M. Couprie, and Y. Viémont. A multi-environment cost

evaluator for parallel database systems. Procedings of the 2nd Int.
DASFAA Japan, 1991.

[CP8&5] S. Ceri and G. Pelagatti. Distributed Databases: Principles and Sys-
tems. McGraw-Hill, New York, 1985.

483

\GLPK94| C. A. Galindo-Legaria, A. Pellenkoft, and M. L. Kersten. Fast, ran-
domized join-order selection —Why use transformations? In Pro-
ceedings of the Twentieth International Conference on Very Large
Databases, Santiago, 1994. Also CWI Technical Report CS-R9416.

'GLPK95] C. A. Galindo-Legaria, A. Pellenkoft, and M. L. Kersten. Uniformly-
distributed random generation of join orders. In Proceedings of the
International Conference on Database Theory, Prague, 1995. Also
CWI Technical Report CS-R9431.

TK 90 Y. E. Ioannidis and Y. C. Kang. Randomized algorithms for opti-
mizing large join queries. Proc. of the ACM-SIGMOD Conference
on Management of Data, pages 312—-321, 1990.

TK91] Y. E. Ioannidis and Y. C. Kang. Left-deep vs. bushy trees: An anal-
ysis of strategy spaces and its implications for query optimization.
Proc. of the ACM-SIGMQOD Conference on Management of Data,
pages 168—177, 1991.

W8T Y. E. Ioannidis and E. Wong. Query optimization by simulated an-
nealing. Proc. of the ACM-SIGMOD Conference on Management of
Data, pages 9-22, 1987.

[Kan91l] Y. C. Kang. Randomized Algorithms for Query Optimization. PhD
thesis, University of Wisconsin-Madison, 1991. Technical report
#1053.

[KCV82] 8. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi. Optimization by
simulated annealing. Technical Report RC 9355, IBM Thomas J.
Watson Research Center, Yorktown, 1982.

IKRB85] W. Kim, D. S. Reiner, and D. S. Batory, editors. Query processing

tn database systems. Springer, Berlin, 1985.

R. S. G. Lanzelotte, P. Walduriez, and M. Zalt. On the effectiveness

of optimization search strategies for parallel execution spaces. Proc.

of the 19th VLDB Conference, Dublin, Ireland, pages 493-504, 1993.

INSS86] S. Nahar, S. Sahni, and E. Shragowitz. Simulated annealing and
combinatorial optimization. 28rd Design Automation Conference,
pages 293299, 1986.

[SGRS] A. N. Swami and A. Gupta. Optimization of large join queries. Proc.
of the ACM-SIGMOD Conference on Management of Data, pages 8-
17, 1988. .

ISwa89a| A. N. Swami. Optimization of Large Join Queries. PhD thesis,
Stanford University, 1989. Technical report STAN-CS-89-1262.

[Swa89b| A. N. Swami. Optimization of large join queries: Combining heuris-
tics and combinatorial techniques. Proc. of the ACM-SIGMOD Con-
ference on Management of Data, pages 367-376, 1989.

UH82| J. D. Ullman. Principles of Database Systems. Computer Science
Press, Rockville, MD, 2nd edition, 1982.

[LVZ93]

484

